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ABSTRACT

Non-relativistic_ classical statistical mechanics is used

to describe a dense fluid of molecules composed of nuclei and

electrons with a purely coulomb interaction potential_ A general

equation of change is derived for the time rate of change of any

macroscopic (ensemble averaged) dynamical variable° From this

general equation s MaxwellVs equations in a medium and the hydro-

dynamic equations of change are derived and expressed in terms

of molecular properties_ e,go polarization and magnetization

densities, These equations are discussed in the limitin_ case .

of low density and compared with previous results,
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INTRODUCTION

A fluid system near equilibrium maybe described either

microscopically or macroscopically. Microscopically, the system

is regarded as being composedof discrete particles, the state of

each particle being described by its position and momentum

coordinates. The time evolution of the state of the system is

described by Newton's equations. From a macroscopic viewpoint,

the system is considered as a continuous fluid, the state of each

infinitesimal region of the fluid being described by its mass,

momentum,and energy densities. The time evolution of these

densities is described by the hydrodynamic equations. Naturally,

a macroscopic description is the only practical one for a system of

more than a few hundred particles. Using such a description_ the

fundamental problem of treating a fluid near equilibrium is that

of Obtaining the hydrodynamic equations of change and the

phenomenological coefficients for the fluid.

For a dilute gas, these equations are particularly easy to
i

derive. The equation of continuity or mass density equation of

change is

+ • - O,
(o.o.i)

the equation of motion or momentum density equation of change is
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(0.0.2)

and the equation of change for the energy density is

In the above_ radiation effects and external forces are neglected.

The quantity_ _ _ is the macroscopic massdensity_ _ is the

_K is the kinetic pressure tensor_ _ is thestream velocity_

kinetic energy density_ and %K is the kinetic energy flux.

Irving and Kirkwood have studied the more general problem and
2

have derived the equations of change for a dense fluid. Essentially_

this derivation results in the addition of interaction or "collisional"

terms to the pressure tensor_ energy density_ and energy flux of

equations (0.0.2) and (0.0.3). However_this work was restricted

to systems for which the interparticle potential approaches zero

faster than the inverse square or higher power of the interparticle

distance. Hence_the work is not applicable to coulomb systems for

which the interparticle potential is proportional to the inverse

first power of the interparticle distance. The equations of change

for such a system are essential to the study of magnetohydrodynamics_

plasma physics_ and any field concerned with the behavior of ionized

gases. Thus it is desirable to supplement the preceding development
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by deriving the equations of change for a dense coulomb gas°

The Irving and Kirkwood derivation of the equations of change is

statistical_ i.e. the macroscopic description of the system is

obtained by statistically averaging over an ensemble of systems.

(This procedure is discussed in detail in Chapter I of the present

work.) Many of the derivations of the equations of change for a

coulomb system_ however_ are non-statistical. 3_4 Starting with

(0.0.i)_ (0.0.2)_ and (0.0.3)_ the equations for a dilute system_

the derivations add terms to the energy_ momentumj and flux densities.

The added terms are macroscopic representations of the electromagnetic

properties which arise from the microscopic coulomb interactions of

the system. Although there is good agreement among various sources

as to what these contributions are for a system of isolated poin t

particles_ there is disagreement when the particles are assumed to

be grouped into molecules. From a purely classical viewpoint_ the

potential between two molecules is a result of the interactions

between the nuclei and electrons composing the molecules. In view

of the complexity of these interactions_ the intermolecular potential

is usually expanded in a Taylor series about the center of mass of

the molecule so that the molecule is represented as a collection

of superimposed multipoles (monopolej dipole_ quadrapole_ etc.).

In the macroscopic equations of change for a molecular system_ the electro-

magnetic contributions contain terms involving the multipole densities.

The reasoning that is used to introduce these densities into the equations
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of change when they are non®statistically derived is not very satisfying

and leads to the conflicting results amongthe various sources that

we mentioned previouslyo Hencea statistical derivation of the

equations of change for the coulomb system is extremely desirable.

In recent years several authors have in a limited way undertaken

statistical derivations. Mazur has derived an equation of momentum

changeby such an approach,5 He neglected magnetic effects_ however_

and treated only a system of neutral molecules. Britten included

magnetic effects in his derivation of the mass and momentum.
6

equations for a coulomb system but considered only point particles.

Kaufmanderived an energy equation of change as well as massand

momentumequations of change_ but again considered only point
7

particles.

It is the purpose of this work to derive_ statistically_ the

equations of change for a system of molecules. In the development

of the equations_ expressions for the electromagnetic contributions

to the energy and momentumdensities are obtained. In Chapter I_

a general equation of change for any macroscopic density is

developed. This equatiom is then used in Chapter II to derive a

set of Maxwell's equations for the macroscopic electric and magnetic

field densities. (Maxwell's equations are a necessary addition to

the hydrodynamic equations of a coulomb system.) Finallyj the

equations of change for the massdensity_ momentumdensity_ and

energy density are derived in Chapters III_ IV_ and V. Wherever
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it seems possible in these derivations, we interpret the quantities

that arise in the resulting equations in terms of known physical

entities such as current density, and polarization density.

Non-relativistic, classical mechanics is used throughout this

work. In many applications_ relativistic effects are completely

negligible. These effects are only important in extremely high

temperature plasma such as that existing in stars. For a system

of molecules, of course, a classical treatment is not adequate.

However, a quantum mechanical treatment would probably not alter

the equations of change but only affect the detailed expressions

for the densities. Since these expressions are not evaluated in

this work, the quantum mechanical development is reserved for

discussion at a later date.



I. THE GENERAL EQUATION OF CHANGE

In this chapter we use statistical techniques to derive a

general equation of change for a system of N charged point

particles. These particles may be considered as representing the

nuclei and electrons in a real system. Although the molecular

properties of the system do not concern us in this chapter_ for

convenience in succeeding chapters_ we make use of a double

subscript notation suggesting that the particles are clustered

into groups representing molecules and ions. Assuming that the

particles obey the laws of classical_ non-relativistic mechanics_

we begin by writing the classical equations for the microscopic

interactions of the particles and the electromagnetic fields that

they produce.

i.i The Microscopic Equations

Newton's equation of motion for particle

ion k is

where _k: is the mass and

particle _ . The force_

the Lorentz expression_

i of molecule or

(1.1.1)

_,_ is the position vector of

__ , on particle k is given by

6
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where _ is the charge and ___is the velocity of particle _ ,

and where is the electric field and is the magnetic

field at particle _ produced by the particles and by the external

sources. The subscript on indicates that the coulombic

effects of particle _ are not included in the expression for the

electric field at particle _ . This point is clarified in

section 1.3 where the expression for _ is developed.

Maxwell's equations for the system are

_--_x E (_-1+_. _ (1.1.3)

_-_'
(1.1.4)

(1.1,5)

where _(_I is the Dirac delta function.

(1.1.6)



The first two Maxwell equations, (1.1.3) and (1.1.4), are

B E-satisfied by the following expressions for and :

(1.1.7)

and

0

(1.1.8)

where _ is an arbitrary vector function called the vector potential,

and _ is an arbitrary scalar function called the scalar potential.

Equations (1.1.7) and (1.1.8) are dquivalent to (1.1.3) and (1.1.4)

and serve as partial definitions of A and _ .

In the next three sections, we derive Hamilton's equations for

the system under consideration and show that these equations are

equivalent to the microscopic equations just given. The treatment

of these three sections follows closely a similar treatment of

Heitler 8. It is included here for the sake of completeness and to

introduce the notation involved.

1.2 The Hamiltonian of the Particles

We first seek a Lagrangian of the system which leads to a set

of equations of motion equivalent to (I,I.I). From this Lagrangian

we obtain the desired Hamiltonian for the particles. Substituting
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(1.1.2), (1.1.7), and (1,1.8) into (I.i.i) we obtain

ar_ _ -
- (1.2.1)

The notation, _ I_l , represents the potential, _(_I ,

evaluated at the position (_ -___I of particle _ , but excluding

the self-potential of this particle. The total time derivative of

&I_ is given by

_A_(___ A (__I ÷ u__ a A(-_I (_'__)
_. - a__- •

('/In the above equation, the above a function indicates partial

differentiation of the function with respect to time holding

constant only the parenthesized variables at the right of the

function, i.e.,

.
When there is no parenthesized variable, the variable held constant

is taken to be 'r

Substituting (1.2.2) and the vector identity,

gk x x A (__ = A_ .Uk- u_.._ .-
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into (1.2.1), we find that

Since _ and A are independent of

may be rearranged to give

'C, _o (1.2.5)

___ , the above relations

(1.2.6)

where

-
"

(1.2.7)

is the Lagrangian. Equation (1.2.6) is equivalent to Newton's equations,

(I.i.I), and Lorentz's equations_ (1.1.2), combined_ and represents

a set of Lagrangian equations for the particles.

We now define_ in the usual fashion_ _ m_ment_m,

_- __L+ _ _
(1.2.8)

conjugate to ___ . Notice that _ is similar to the usual linear

momentum, /_ ___ , for particle _ except for an additional

term involving the vector potential. Using (1.2.7) and (1.2.8),

the particle Hamiltonian, which is defined as
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(1.2.9)

may be written as

(1.2.10)

Later_ in section 1.4_ it is confirmed that the above expression

leads to a set of Hamiltonian equations for the particles_ which are

equivalent to Newton's and Lorentz's combined equations.

1.3 The Hamiltonian of the Fields

Wenow seek a Lagrangian and corresponding Hamiltonian which

lead to the equations of motion of the fields. From Maxwell's last

two equations_ (1.1.5) and (I.i.6)_ and the definitions of the

scalar and vector potentials) (1.1.7) and (I.I.8)_ we derive

differential equations for _ and _ . First we substitute (1.1.7)

and (1.1.8) into (1.1.5) and (1.1.6). From (1.1.5) we obtain

Rx _x +i- -2_ =

Thenj using the vector identityj

C, °
(1.3.1)

(1.3.2)
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we obtain one of the desired differential equationsj

From (1.1.6) we obtain the second desired equationj

Equations (1.3.3) and (1.3.4) can be simplified by use of the

C_lomb gauge. The vector and scalar potentials_ A and _ are

only partiall 7 defined by (1.1.7) and (1.1.8). As a further part

of the definition_ we require that A satisfy the relation

_) .A=o. (1.3.5)

With this choice of the gauge conditionj (1.3.3) and (1.3.4) becomej

respectively_

and

(1.3.6)

-. _E_L¢C-_'--_I (1.3.7)



It is convenient to separate A and _ , each, into an external

part, which arises from charges external to the system_ and an

internal part_ which is produced by the' system itself:

(1.3.9)

The external contributions, A _I and _I have no sources inside

the system and_ hence_ from (1.3.5), (io3_6)_ and (1.3.7)_ satisfy

the following set of equations:

(1.3.10)

i _¢._ _A C_-_ _ _,.__.+! _4b<_l_ _ -_; .: o. (1.3.11)

(1.3.12)

The internal contributions_ thus, satisfy the equations_



(1.3.13)

c_ _ _ _ --Z-

and

Equation (1.3.15) may readily be solved, to give

(1.3.14)

(1.3.15)

i
(I. 3.16)

Thus$ in the coulomb gauge r is expressible solely in terms of

the particle coordinates.

We now return to (1.3.13) and (1.3.14) to derive a set of

Hamiltonian equations for _ . For this purpose we expand _A_

in a series of orthogonal time £ndependent functions, A_(KI

In order that there be an enumerable number of such functions, it

is convenient to restrict the discussion to a system enclosed in

a cubical box of side length L . Since the system as a whole

has no net charge, we take the box large enough that _I, _ O on

its surfaces. We further assume that A_ is periodic on the
i ,

surface of the._box, i.e. that - and'.its derivatives have the
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same values at corresponding points on opposite planes. The A_ are_

then, defined by

C.. --

(1.3.17)

A -- O (1.3.18)O

and

Equation (1.3.18) ensures that the gauge condition, (1.3.13)_ is

9
obeyed and (1.3.19) is a normality condition. In addition_ we

require as a boundary condition on (1.3.17) that the A_ be

periodic on the surface of L 3.

Since the A_ form a complete set of vector functions_ the

vector potential A___ may be expanded in the form_

(1.3.20)

Substituting (1.3.20) into (1.3.14), taking the dot product of

L 3
both sides with _ _ and integrating over _ we obtain
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a"" - e..t, a_ -

- c. el_.u___. _ .c(_.-e o_. (1.3.21)

The first term on the left of (1.3.21) is easily evaluated from the

normality condition_ the second term is evaluated from (1.3.17) and

(1.3.19_, while the term on the right is a familiar delta-function

integral. Finally, the last term on the left is shown to be zero

i

as follows:

$

The second term in the first line of (1.3.22) is zero due to the

(1.3.22)

gauge condition_ (i 3.18). The boundaries of the system of particles

may be taken as the integration boundaries of the surface integral

in (1.3.22). Since the system is charge neutralj i.e.

_{_I is assumed to be zero on the boundaries of the system.

(i. 3.23)

Hence,

the surface integral is also zer% and (1.3.22) may be written as

a_ _ 'kla O_ le _--" O. (1.3.24)
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In view of the above arguments, we maywrite (1.3.21) as

_" _ , (I. 3.25)

(where for convenience we have changed the index _ to _ ).

The equations (1.3.25) are equivalent to Maxwell's equations

and are also analogous to the equations of motion of a system of

independent forced harmonic oscillators. Carrying this analogy

further, we may take as the Hamiltonian for the fields, the

Hamiltonian of the equivalent system of oscillators, namely:

-g- u_k-'Z

(1.3.26)

_ is the momentum conjugate to _ In the followingwhere

section, we confirm that the above Hamiltonian leads to a set of

Hamiltonian equations for the fields. In view of the analysis in

this section, these Hamiltonian equations are equivalent to Maxwell's

equations, (1.1.3) to (i.i.6).
: [

1.4 The Complete Hamiltonian and the Hamiltonian Equations of Motion.

N! comparison of (1 2.10) and (1.3.26) suggests considering the
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particle Hamiltonian, _ , plus the last term of the field

Hamiltonian, _ _ as the Hamiltonian,

for the complete system (both fields and particles).

(1.4.1)

The first

term --_. _ ___,AC__I , in the expression for _ is already

included in the first term of the expression for _ ; hence this

term should not be repeated in the expression for

Since, from (1.2.8), the first term in (1.4.1) may be written

as _ _ , this term is the kinetic energy, of the particles.

The second term in (1.4.1) is the coulomb potential energy of the

particles, and the final term is the energy of the electromagnetic

fields. I0 Therefore, "_ _ as given by (1.4.1) is the total energy

of the system. However, the on!y true criterion for deciding whether

(1.4. i) is the correct form for the Hamiltonian of the system is to

ascertain, as is done next, that _ yieids a set of Hamiltonian

equations of motion consistent with the microscopic equations of

motion for the system.

From Hamilton's equations of motion it follows directly that

or

(1.4.2)
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=&; (1.4.4)

and

_ e--k___m A_(-_I--_%+ _ "_ (1.4.5)
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Equation (1.4.3) with a bit of rearrangement can be shown to be

identical to (1.2.5), the particle equation of motion. In addition

(1.4.5) can be seen to be identical to (1.3.25)_ the field equation

of change° Hence _ in (1.4.1) is the Hamiltonian of the compl_te

system.

We now rewrite the expressions for the electric and magnetic

fields in terms of the canonical coordinates_ _ and _ . From

(I.i.7)_ (1.3.8), and (1.3.20), we have

_ + (_ (1.4.6)- - .
2,

And from (I.I.8)_ (1.3.8)_ (1.3.9)_ (1.3.16), and (1.3.20)_ we have

(1.4.7)

Notice that while the magnetic field depends only on the field

coordinates $_ _ the electric field depends on both the _ and

the particle coordinates _. The part dependent on the _is

the electric field in a stationary system_ while the part dependent on



the _% describes the retarded potential and the radiative effects.

1.5 The General Equation of Change

The phase space of the system is an orthogonal_ multi-dimensional

space consisting of the position and momentumcoordinates of the

particles and the field oscillators. That is_ the coordinates of the

phase space are the set_ (_j__-- ..-- -_ _ _ ). If the point in
I

phase space representing the state of the system at a given timej_j

is known_ we can_ in principle_ find the point representing the

state at any other time by solving the set of Hamiltonian equations.

From this information_ the value of any property of the system at

any time may be calculated.

However_ it isj Of course_ an impossible task to determine at

the positions and momenta of all the particles and field

oscillators or to solve a set of Hamiltonian equations. It is

fortunate_ therefore_ that for practical applications detailed

information about the exact state of the system is unnecessary. What

we want to calculate are the macroscopically observable properties

of the system such as the electric field_ produced by the system at

a point in space. For this purpose_ we consider an ensemble of

systems. This ensemble is represented by a cloud of points in

phase space_ the density of which at time_ _ , is proportional to

function.

21



The function_ _ is normalized such that

(1.5.1)

22

The value of this function at a point in phase space is the

probability that a system chosen at random from the ensemble is in

the state described by that point. The average or macroscopic

value, of any function, , of the coordinates and momenta is

For the macroscopic functions of interest_ _" has no explicit

time dependence_ i.e.

_ = O_ (1.5.3)

and depends on only one or two variables_ of the set_

_ _#_)_j _) Hence_ it is possible to write (1.5.2)in

terms of reduced distribution functions involving only those

variables on which _" depends, ii To obtain expressions for the

macroscopic variables_ therefore_ we need information about only a

small number of particles or field oscillators. Although_ in our

work_ we do not develop expressions for the macroscopic variables_

we do obtain expressions for the time derivatives of some of these

variables in terms of other macroscopic quantities. In the remainder
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of this section_ we show that this maybe done without explicitly

evaluating the integrals in (1.5.2).

It maybe shown12 that the function _ {_I_obeys an equation of

change knownas the Liouville equation_ which maybe written as

+ A* -F_"_*=o, (1.5.4)

where A _ is the Liouville operator_

(1.5.5)

From the Hamiltonian equations of motion_ (1.4.2) through (1.4.5)_

it follows that this operator is

u__.! u_ e.._
___+ _ - - . _

_ + _--_ (-._I-o__ .o _.,A__
(1.5.6)

It is convenient in the later discussion to use _ rather

than _ as an independent variable. The distribution function

in this new coordinate system is defined by

_--_ j_f_"_* (1.5.7)
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where

is the Jacobian of the transf°rmati°n (-_'a_J _J _I-'--_I_I_-_'L_;J_)"-, i ---- ---

Substituting (1.5.7) into (Io5.4)j we see that the new distribution

function satisfies an equation similar to the Liouville equation_

tA# =o, (1.5.9)

where _ is the operator in the new coordinate system_

(1.5.10)

The derivation of this expression for the operator is discussed in

Appendix I.AIo

Finally_ we derive an equation for the time derivative of the

ensemble average of any dynamical variable _ __

where

(1.5.11)
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This is the general equation of change.

From (1.5.1), (1.5.7)_ and the well-known integral transformation

relation, we write the normalization condition on as

<ffSimilarly, from (1.5.2), the ensemble average may be

written in the new system of coordinates as

where

(1.5.13)

A

The time rate of change of _qb is given by

(1.5.14)

m

(i.5.15)
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In _iting the first two lines of (1.5.15)_ we Use the explicit

time independence of g _ee (!.5.3_ and the equation of change

for _(NI , (1.5.9). The last line of (1.5.15) follows from the

property that _ is skew-symmetric with respect to inte_ation

over phase space (see _pendix I.A2)_. The general equation of

change may thus be _itten as

Starting with Newton's and Maxwell's equations_ we have

derived the Hamiltonian for a system of non-relativistic point

charged particles. Using this Hamiltonianj we have derived a

Liouville equation for the distribution function of the system in

phase space_ and_ from thisj a general equation of change for the

ensemble average of any dyhamical variable. This general equation

of change forms_ in the succeeding chapters_ the basis of the

derivation of the macroscopic Maxwell relations and the magnetohydro-

dynamic equations for the system.
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Appendix I.AI: The Transformation of _ to _ .

Wediscuss here the transformation of the Liouville operator

to thein phase space, the space of _ __j

operator A in the space, (__j _j _/o

The equations of transformation from the stared to the unstared

coordinates are _see (1.4.2)]

(I.AI. I)

(I.AI. 2)

and

_= _'. (I.AI.4)

The general equation for the transformation of a partial

derivative from the stared coordinates to the unstared is

(I.AI.5)
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where __. The function_i_is a function of _, the

generalized coordinate in unstared space, and _ is a function

of "_-_ , the generalized coordinate in stared space.

Using (I.AI.I) through (I.AI.5)_ we write

and
+

(I.AI.6)

(I.AI. 7)

(I.AI.8)

(I.AI.9)

Substituting (I.AI.6) through (I.AI.9) into the expression

for A _ , (1.5.6), we obtain
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- . _c _ " '_.

+

• "_

(I.AI. i0)

Combining the second and third terms of (IoAI.10) and referring

to (i.I.7) yields

From the fourth and fifth terms of

(1.AI.ll)

(I.AI.10) and referring to

(1.1.8), we write

(I.AI. 12)
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Hence_ we may write from (I.AI.10),

(I.AI. 13)

This is the expression for
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Appendix I.A2: A Proof that _ is a Skew-SymmetricOperator

From (1.5.9) it is readily seen that _ is of the form

f

where the _ are the independent variables_and _ is a function

of any of the independent variables except _, Using this

form_ we write

(I.A2.2)

Using Leibnitz's rule_ the first term in (IOA2.2) may be written

a_ _ _--_ '
---0.

The last step in (I.A2.3) results from the condition that _I

_vanishes as each independent variable approaches the limit of its

range. Using (I.A2.3)_ (I.A2.2) may be written
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(I.A2.4)

This is a statement of the skew symmetry of _ •



II. THEMAXWELLEQUATIONSIN A MATERIALMEDIUM

In the previous chapter, we defined the microscopic electric

and magnetic fields, and__ ee (1.4.6)and (1.4.7)

These fields fluctuate rapidly with time; the measurable quantities,

however, are the macroscopic fieldsp._ and _, obtained by

averaging E_and _over a statistidal ensemble. The fields,

-and , are described by a set of equations analogous to the

7Maxwell equations for E_and see (1.1.3) to (1.1.6)

These Maxwell equations, in material media, may be derived by

evaluating the quantities, _' E , ,_ , --_ , and _ •

2. i The First Maxwell Equation

The derivation of the first Maxwell equation is trivial.

Starting with the definition of ___ ,

k--

<By>,
we take the divergence of both sides to obtain

(2.1.1)

or, since the divergence of _ is zero ee (i. I.

(2.1.2)

(2. I. 3)

"B=O.

This is the usual equation for the magnetic field iN a material medium.

33
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2.2 The SecondMaxwell Equation

Wenext consider ------- From the definition of

and the general equation of change, (1.5.16)_ we have

where the last term is a consequenceof the simple identity,

, (1.4.6),

(2.2.1)

(d"I>= _J'_<I>= B_'_. <_)

Applying Maxwell's equations in vacuo to the second term on the right

of (2.2.1)and carrying out the .A operation [see (1.5.10)] in the

first term_ we obtain

K _

NOW from (1.4.7):, the definition of _ it is seen that

(2.2.3)

(2.2.4)

---- - _£ IL + E _el

A
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where again we use a simple identity_

<_(el>-= _(el o (2.2.5)

Taking the curl of both sides_ (2.2.4) becomes

Finally, substituting (2.2.6) into (2.2.3), we arrive at the relation,

(2.2.7)

Once again this is well-known as a Maxwell equation in a material

medium.

2.3

q

The Third Maxwell Equation

From (2.2.4), we write

_,s-- _ f +-.E
The second term on the right is zero by Maxwellts equations in vacuo,

and by carrying out the differentiation in the first term on the

right, we obtain

_e__I_ _)_ (2.3.2)
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where_I _ ____ _I_canbeinterpretedasthemacroscopic
charge density at the point _._ .

In the above paragraph_ we have expressed _ ° _ in terms of an
u-

electron-nuclei centered density _I-_l° We would like_ however_

to write _-_ °E in terms of a molecule-ion centered density,£(-_--_),
___ -

where __ is the vector to the center of mass of molecule _ ,

and /_ is the mass of molecule _

(2.3.3)

/__. _ • (2.3.4)

To do this we expand each _ subscripted term on the right of

(2.3.2) in a Taylor series about __ ,

(2.3.5)

Her e

(2.3.6)
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is the vector from the center of mass of molecule k_ to particle i

of molecule k .

Equation (2°3.5) may be written in the general form_

(2.3.7)

where the superscript n's have the obvious meanlng, e.g.

_ t___= a_g_R_,i ___._a_. (2.3.8)

Now using the symmetry of the delta function_

(2.3.9)

we write (2.3.7) as

We now define a tensor of order_ /%%

where _ is the electric multipole moment of order /_% of

molecule k o This quantity_ _ may be interpreted as the
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macroscopic molecular electric multipole density of order /_ . For

example C_ {0] is the monopole or charge density, _._'), _ _ the dipole

density, etc.

Utilizing (2.3.10) and (2.3.1!) , we may write (2.3.2) as

(2.3.12_

It is convenient to define the "true" macroscopic charge density by

where

(2.3.13)

__ __ (2.3.14)

is the charge of molecule k It is also convenient to define the

electric polarization, __P , by

and the electric displacement, b , as

(2.3.15)

D=__E+9 -P. (2.3.16)

In terms of these quantities, equation (2.3.12) becomes
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(2.3.17)

In form_ this is a usual Maxwell equation for a material media_

but our definition of ._ is a generalization of that usually given

since we include moments of higher order than the dipole. From

equation (2.3.17)_ it i_s clear that D is that field whose sources

are the molecules of the system_ in their ensemble averaged positions_

regarded as ideal monopoles or point particles. In contrast to _D

it is seen from (2.3.2)_ that the field_ ___ _ has as its source the

"true" particles of the system_ the nuclei and electrons regarded as

point particles. From these arguments it can be seen intuitively

that _D is that quantity which _ approaches as the average inter-

molecular distance increases. In dilute systems_ therefore_ _ is

a close approximation to E _ and P in (2.3.16) is negligible. As

the density of the system increases_ _P has a greater effectj and

more terms must be retained in its series representation_ (2.3.15)_

to obtain accurate results.

2.4 The Fourth Maxwell Equation _

To obtain the final Maxwell equation_ we evaluate

From the general equation of change_ (1.5.16)_ and the definitions

. of ___ and A , (2.2.4) and (1.5.10)_ we obtain
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w

a_ . I

__Lf_
(2.4.1)

In Appendix 2,AI_ the first term in (2.4.1) is simplified. If the

result from this appendix is substituted into the first term of

(2.4.1)_ and the defining equation for A___ _ (1.3.17), is

substituted into the second term_ we obtain

From a well-known vector identity and the condition that the

divergence of _is zero [see (1.3.18)_, it follows that

(2.4.3)

From Maxwell's equations in vacuo, it also follows that
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- -c XB
_x: _ -

(2.4.4)

Thus, (2.4.2) may be written

_=.-= __ _,u__£(_-_ + c × xA.p_ +c x B_'j
_¢ _'- _.

(2.4.5)

Finally, from the definition of ___ _ (1.4.6), it follows that

where _e-__(-_-_l>is the

analogous to the macroscopic total

Equation (2.4.6)

macroscopic total current density

charge density, _._C_ _-_--_I>.

is the particle centered equation analogous to

(2.3.2).

Again_ as in

molecule centered

From (2.3.16), it

section 2.3_ we transform this equation to a

expression. To do this, we first evalute

is easily seen that

_O _E ;P
_= - +WTF - • (2.4.7)

Substituting (2.4.6) into (2.4.7), we obtain

3_ (2.4.8)
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Expand ing

obtain

a Taylor series similar to (2.3.7)_ we

(2.4.9)

In section 2.5_ we evaluate the time derivative of the

polarization_ _P _see (2.5.9)_ The result may be written as

The quantity_

(2.4.10)

is the velocity of molecule _ _ and

(2.4. Ii)

(2.4.12)
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istheve_ocityof the "true" particle

molecule _ Substituting (2.4._)

about the center of massof

and (2.4.10) into (2.4.8) allows

(2.4.8) to be written as

(,_'_11

(2.4.13)
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Notice that the first term in the final expression for (2.4.13) is

zero when n = 0 and also when r = n; hence we write

From the usual vector identity_

(2.4.14)

(2.4.15)

the identity,

(2.4.16_

is derived_where n is a positive integer° Also from (2.4.15), we

obtain

,.I '_b b_.._ ___I_\ _-'I _.I×
(2.4.17)

where _ is an integer Such that O_---/_/_-I • Using (2.4.16) in

the first integral within the_ _ in (2.4.14), and using (2.4.17)

J
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in the second integral, we obtain

_+_

For convenience we define a "magnetic multipole density",

(2.4.18)

(2.4.19)

and an "equivalent magnetic multipole density",

M(,,-L_ i

where ,_,_ and i_i_ are tensors of order /_ To in_terpret these

quantities, we regard the motion of the multipole moments of a

molecule as being separated into two parts: The motion about the

center of mass of the molecule gives rise to the i_,_, while the

M_I
motion with the center of mass gives rise to the _ . Under this

M .
interpretation, the monopole term, _ _is regarded as the current

density and is designated by the symbol,
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= t >

We further define a magnetization,

(2.4.21)

and a magnetic intensity_

(2.4.22)

H- B- _'_. (2.4.23)

With these definitions_ (2.4.18) may be written

____D: _ _ j + C_E× _ (2.4.24)

This equation is a familiar Maxwell equation in a material media

as are the equations derived in the previous sections. The quantity,

_, is analogous to _ in that it is the magnetic field produced by

the molecules regarded as point charges. This can be seen from

since J _see (2.4.21)_ is due to the motion of the(2.4.24)

molecular charges assumed concentrated at the c!enter of mass of the

molecule. By reasoning analogous to that of section 2.3, _ is

interpreted as being produced by the "true" point charges (the nuclei

and electrons). Hence, H is a close approximation to B for

dilute systems, but, for more concentrated systems, H should be

corrected by adding to it the magnetization, M, which depends on
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the motions of nhe intramo]ecular charges° These terms are the M (_

and _u see (2o4.19)and (2.4°20

To clarify the interpretation of _ we introduce the conc:ept

of a mass weighted macroscopic r_u)lecular velocity_ the familiar

"stream velocity"_

and a "Brewnian motion veloc_ty_'_

(2,4.25)

Using these defi.nitionsj L_:Decolnes

(2°4.26)

if we write __Mincluding only the terms to the second order in

and _ _ we obtain by using (2_4,27)

(2.4.27)

(,2.4.28)
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where

(2°4°29)

If we assume that _he Brownian motien is small com_red to the

stream velocity_ and neglect the quadrapele ter_ we may write

(2°4.28) as

(2.4.30)

13
a familiar result for "constant velocity '_ syete_s. If we assume

further [:hat the system is stationary_ (2,,4.30) becomes

(al

which is another familiar expression°
14

(2.4o31)

2°5 The General Conservation Equation _{_

We next derive an e_.pres_ion for _ For /_'_ the

result is the familiar equation of charge conservation° The general

result is frequently used in conjunction with Maxweli_s equations°

Use was made of this general result in de[i ving the fourth Maxwell

equation in the previous section _see (2_4.10)_

From the _eneral equation of change and the definition of _

(1o5.16) and (2.3,,Ii)_ it follows that
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(2.5.1)

From the definitions of and , (2.3.3) and (2.3.6), we write

and

where £_ is the Kronkeker delta Isee (1.3.19)_ _ and

the unit t_nsoro

(2,5.2)

(2.5.3)

I is

Substituting (2.5.2) and (2.5.3) into (2.5.1) and

summing over lj, we obtain

(2.5.4)



50

_._ and _ are defined by (2.4.11) and (2.4.12), respectively.where

Notice that (2.5.4) may also be written as

When /I_= _ , the above equation reduces to the familiar equation

of charge conservation,

----+_. J- O_
_, _- -

where _ is the macroscopic charge density and

macroscopic current density [see (2.3.13) and

(2.5.6)

J is the

(2.4.21)J

Furthermore_ the form of (2.5.5) suggests the definition of two

new quantities,

(2.5.7)

and

• k_
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If (2.5.5), (2.5°7), and (2.5.8) are combined with the definition of

, (2.3.15), the resulting equation is

(2.5.9)

This has the form of a "conservation" equation for the polarization,

P In this equationj Jp may be interpreted as a polarization

current and _ , as a "source" of polarization.

We introduce in this chapter a device which we use throughout

this work. By multiplying the dynamical variables by a molecular

density function_ £I-_-__I, rather than by a particle density

function_ £I__-__), we introduce a set of macroscopic fields_ _D and

H the of which the molecules with internal structuresources are

neglected.. We derive a set of Maxwell equations for these fields and a

polarization and a magnetization, P and ____ which correct D

and _. for the internal structure of the molecules when this

structure is important. Finally, a conservation equation for the

polarization_ __ , is derived.
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Appendix 2.AI: A Proof of a Relation Involving the A__

From the expression for _{i) in terms of the canonical variables,

(1.3.16), we have, recalling the significance of the I'l notation

[ see (1.2.3)] ;

I (2.A1.1)

Substituting (2.Al.1) and the expression for __ in terms of the

canonical variables,(1.3.20), into the equation relating and ___

(1.3.14), we write

A

Finally, substituting the defining equation for

(2.AI.2)

_A_, (1.3.17),

and the equation of motion for

we obtain

_ , (1.3.25), into (2.AI.2),

(2.AI. 3)

which is the desired result.
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III. THEEQUATIONOFCONTINUITY

In a fluid, the macroscopic quantities of interest are the mass_

momentum_and energy. In the remaining chapters_ we derive the

equations of change of these quantities. We find it appropriate_ as

in the previous chapter_ to define the macroscopic mass_momentum_

and energy densities in terms of molecule centered integrals

containing _I_-_l. The particular equations of change are obtained

by using the general equation of change, (1.5.16), to obtain the

time derivatives of these densities. In this chapter_ we obtain, in

particular, the equation of continuity.

A molecule centered macroscopic mass density is defined as

To obtain the conservation equation for

(3.0.1)

f _ the general equation

of change_ (1.5.16) is used to find the time derivative_

Using (2.5.2) and summingover _ _ it is found that

(3.0.2)
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(3.0.3)

The quantity on the right of the last equation is the macroscopic

molecular momentum density_ in terms of which the stream velocity_

/___ _ is defined [see (2.4.25)_

Hence (3.0.3) may be rewritten

This equation of continuity for an ionized fluid is the usual

15
equation of continuity for a non-ionized fluid.

(3.0.4)

(3.0.5)



IV° THEEQUATIONOFMOTION

In a manner analogous to that of the previous chapter, we now

develop an equation of change for the macroscopic momentumdensity_

_ _/_ . This equation of motion contains force terms arising from
the electromagnetic properties of the medium. In the usual treatment

of molecules interacting according to a potential_ these force terms

are expressed as a collisional contribution to the pressure tensor_

and this contribution is obtained as an integral involving the radial

distribution function. In the electromagnetic casej because of the

long-range nature of the coulombpotential_ this integral diverges.

The essential problem of this chapter is that of separating the

effect of the electromagnetic forces into short-range terms leading

to a non-divergent collisional contribution to the pressure tensor

and long-range terms involving functions of the macroscopic electric

and magnetic fields introduced in Chapter II.

4.1 The Time Derivative of the MomentumDensity

As in Chapter III_ we take the time derivative of the macroscopic
r

momentum density (3°0.4)gusing the general equation of change_

(1.5.16), and obtain

55
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_singtheprevious1_derivedexpressionfor__ "l[_ee_252_
and the definition of _, (2o4olI)_ we can, upon summing over _

bring the first term on the right of the equation to the left_ and

write (4olol) as

-F_- +_" _- - 2

We consider first the second term on the left of

(4.1o2)

).
(4.1.2) and use the

definition of Y___, (2.4.26)_ to write

Since, from the definition of /___

(4. I. 3)

the second term on the right of the last equation vanishes.
l

first term

(4.1.4)

The

(4.1.5)
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is the usual kinetic contribution to the pressure tensor.

Substituting (4.1.3) and (4olo5) into (4.1.2)_ we obtain

- _

The last equation_ except for the last term on the right_ is

the usual equation of motion of a non-ionized gas at low density.

The last term_ then_ describes the effects of external fields on

the charged particles and the effects of the collisional transfer

of momentum through the interactions among the particles. To

examine this term in more detail _ we write

(4.1.6)

where

(4.1.7)

(4.1.8)

and

In (4.1.8) and (4.1.9)_ _(__lis the macroscopic magnetic field

density at p_-_L'as defined by (2.1.1)and __r,E_I_Llis the macroscopic
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electric field density defined by (2.2°4) excluding the effects of

particle _'_ •

Explicitly_

I

(#,. 1. io)

where the (l) on the brackets in the second and third lines of

(4.1.10) indicates that the average is to be carried out over the

primed variables only.

From (4.1.I0)_ it is clear that we may also write

The first term inside the brackets in the above equation is a

double sum over all the particles_ while the second term involves

only one particle. The first term may_ therefore_ be expected to

be larger than the second by a factor of the order of magnitude of

N2_ where N is the number of particles in the system. Thus_ since
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N is taken to be large, the second term inside the brackets in

(4.1. II) is negligible. Consequently_ using the definition of ___)

(2.2.4)_ we may write (4.1.11) as

Thus, from (4.1.8), X may be expressed as

(4. I. 12)

Substituting the definitions of X and A into (4.1.6) we

obtain for the equation of motion

From (4.1.9)_ A is seen to be dependent on the difference between

_ _and the macroscopic fields_ E Lthe microscopic fields____and

and _ This difference is appreciable only for dense systems

For low density systems_ then, _ is the primary contribution to

the force term in (4.1.14). Hence_ because ---X represents the

interparticle interaction when the interparticle distance is large,

X is the "long range" contribution to the electromagnetic force.

The term A ' which is a correction to _X when the interparticle

distance is small, is, consequently, the "short range" contribution
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to the force term° More is said abo,_t the interpretation of /_

at the end of section 4o2o

4.2 The Short Range Term

Next we consider the short range term_ A _ in greater detail.

For this purpose it is convenient to define a double average of a

(primed and unprimed) of independent variables as

7(" ,"

where _ _N_ _see (I.o.5o7)]

phase space of the system°

X _ _.,_ J_,_'_._. d_,_, 42 _ _L _'_ _/_) (4.2.1)

is the distribution function in the

In view of the normalization condition_

< I> = 1 [see (1.5,!2)_ _ we find that

(4.2.2)

Using this double average notation_ we write from (4.1.9) and

the _definition of -- ( .__ and __,-_i,l ee (4.1.10)and (1.4.7

A-- A_o+ (4.2.3)

The first term in (4.2o3)_
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is the coulombic interaction term. The second term_

where _1_V'_is defined by

(4.2.4)

(4.2.5)

_t

is the transverse or retardation correction tO the coulombic

(4.2.6)

interaction plus the short range magnetic interaction term. For

the non-relativistic systems we consider_ the particJes have low

velocity and these last effects are small.

In casting A into a more significant formj we first treat

the coulombic term. For _ _ a Taylor series expansion results in
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which_ since

may be written in general as

(4°2.8)

(4.2°9)

(4,2. I0)

whereas

the first term involves a sum over k onlyo Therefore the second

term is larger than the first by a factor of the order of magnitude

of M_ where M is the number of molecules in the system° Since M

is assumed to be large_ we neglect the first term of (4,,2,10) and

write
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where

• o

The quantity_ N I " _is related to the pair distribution
-j-J

function. If we look at the zeroth order term of (4.2.12)_ we obtain

(4.2.13)

This is closely related to the difference between the pair

distribution function and the product of single particle distribution

functions. The higher order terms describe the effects of molecular

structure.

]-l_, of order n is useful:
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,u.I -]--_,'-/

M

,u,I T_I

/L- 0

_ Nl-/,_,, _//-O"= /-,-_')"''_ . (4, _. 14)
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The second line in (4.2,14) follows from the first line upon

interchanging _ and _-_ _ which is equivalent to reversing

the order of the summationover /_ The third line follows

from the second upon interchanging the order of factors in the

supervector_ _ a valid operation when the supervector

multiplies /_ times a symmetric tensor of order /k In writing

the third line we have interchanged the primes on the variables of

integration in the second term and made use of the identity_

=-- c-,l (4.2.15)

Finally the fourth line results from interchanging the dummy indices

_'_ and _-d

Now we are in a position to write from (4o2.11)

In going from (4.2.11) to the first line of the above equation_ we

have interchanged the dummy variables _ and _ %n writing
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the second line use has been made of (4.2° 14) and the relation

9 l_+')i _ <,_+,1f _ \f,,+,l
(4.2.17)

Finally_ we obtain the last line of (4.2o17) by adding the first

line to the second and dividing by 2_

Next we expand _L_ . L__ in a Taylor series about _

and write (4.2o16) as

__ ,_ ' <_,...,,j,_,f/_/<_+''' 7

x 7:":j<"',-+,, ',
" 3m_ _ I_ I I-+,l _,,W,,+,l I_-I __.j- _ _ .,,,,l(_,__s_ (<;

_ 2. _ _ =..-,.,,,, ,,<,,,i _,.i.

_'_ /..', ,tl.,+,) ,I__,Ifa+'}- _+-----T0!I t'--J- "<"+'J _r(,_'-__)
J- 0

(4,2.18)

(4.2.1 9 )
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where, in writing the last line, we have integrated over _ and

have then dropped one of the primes from __i/

We now define the collisional contribution to the pressure

tensor as

Using this definition of

_.:0 /_"-0
(4.2.2o)

_ we write from (4.2.19) and

(4.2.3)

The term_ _l_ [ see (4"2"5)I, c°ntains the c°ntributi°n t°the__

short range force, A _ which, apparently, cannot be written as

the divergence of a contribution to the pressure tensor. As

mentioned earlier in this section_ ___M depends on the transverse

fields and retardation effects, while _____ and, consequently, _

i

depends on the coulombic effects. When the interparticle distance

is small enough for A to contribute significantly to the

electromagnetic force, the coulombic effects are more important

than the transverse field and retardation effects, especially for a

non-relativistic system; hence, for most applications_ _--M can be

neglected in comparison to --_,

As a further aid to understanding the "short range" nature of
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!
, we now discuss the dependenceof _m and L_M_ upon interpar ticle

correlation. In the absence of correlation between the states of any

two particles, we can factor the distribution function into a

product of functions each involving the position and momentum

coordinates of only one particle:

'3(J_I/v'("l (_ 1 (4.2.22)

Now, instead of the distribution function on the left of (4.2.22)_

the distribution function on the right may be used in performing the

integration in (4.2 12) In this case, the primes on the _ in

(4.2.12) may be interchanged without interchanging those on the __.

The result is

_g_,_-_1_+_1t_(_-_'1-r(-_--_")l >>

("_(' ) o (4.2.23)

By substituting (4.2.23) into (4.2.20), we see that in the absence

of correlation between particles _-_ vanishes.
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A

A similar treatment applies to /._/_.

___land _l_see (4.2.6)_ (2.1.1)and (I°4.6)_ _ we wr_te

Written in this way -_Mis seen to depend on correlation between

the field coordinates and the particle coordinates; for if there

is no correlation_ the distribution function can be factored into

a product of a function involving just the field coordinates and a

function involving just the particle coordinates_

From the definition of

(4.2.24)

(4.2.25)

If (4.2.25) is substituted into (4.2.24)_ the primes on the field

coordinates may be interchanged without interchanging them on the

particle coordinates; hence

(4.2.26)
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Thus in the absence of correlation between particles and fields_ --_M

vanishes as did in the absence of interparticle correlation°

This analysis gives another insight into the nature of the short

range term _ It also explains what we mean by the term

"collision" in connection with a coulombic system° Since the

coulombic potential is a long range potential_ one molecule is

always influenced by the other molecules in the system sufficiently

to regard all the molecules as being in continuous "collision" with

one another. But we divide the coulombic force into two parts.

One part_ _ in (4olo14)_ depends on the macroscopic fieldso The

other part_ _ , depends on the correlation between the particles.

It is in the sense of this correlation that we may now think of a

"collision"° Two particles have "collided" when theY become

correlated. A particle has "collided" with a field when it becomes

correlated with one of the field oscillators. Since correlation is

short-range_ the term "collision" becomes meaningful° It is in

this sense_ too_ that A is regarded as a short range collisional

force°

4.3 The Long Range Term

Now we discuss in more detail the long range force term_

From (4.1°13) we write

(4.3. I)
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where

is the electric term_ and

(4.3.2)

._x,,_-@_,@L"--_x__,l-,,,.,/_(,,._.-_..)>
is the magnetic term.

We treat the term _E first. Expanding

series about __ _ we %_rite

(4.3.3)

_(_-_I in a Taylor

-XE -_ _gk

where

/_"- o

/_'-O /

Z and _ are defined by (2°3.13) and (2.3. ii). Since

is a symmetric tensor_ it can be shown in a straightforward

(4.3.4)

manner that
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Using this relation, (4.3°4) is written

I_=O j-=o _-

+ (4.3.6)

where P is defined by (2o3o15) and '_I is an operator defined by

_I_--_; ,i_\_ (4.3, 7)



In this definition_ the operator $ operates not only on

but also on any function of _ on the

right of ?I The sy_b._l _._, is used for the qdantity defined by

(4.3.7) because of the analogy between this operator and the

polarization £

We next consider the magnetic term, _X_ , in (4.3,..1) [see

(4.3.3)] For conveniencej we first introduce the antisymmetric

tensor, _ --B j defined by

73

I

_ is the Levi-Civitawhere density.

is easily shown that

(4.3.s)

With this definition_ it

Thus X_ becomes

Expanding this term in a Taylor series about _ j we obtain

Xs--" _ = •
/_--0

' va, " (:J,)-
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In order to rewrite the last expression in a more significant

form_ we first break --_k into its two components __ and Y_ o

Then by adding and subtracting terms (the reason for the choice of

which will become clear later) we write

(4.3.12)
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In writing toe last form_ we have eliminated the zero subterms of

the first two main terms of the previous form and made use of the

identities, (2.4.16) an_ (2.4.17), to introduce the cross product
l

into these terms. In:the third main term_ we have replaced _'_ by

_ Finally we have used the definition of _ 0see (2.4.21)7

to rewrite the last term.

Now applying a relation similar to (4.3.5), we obtain from the

above

q- _.. _'__X__B . (4.3.13)
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In this equation, we have replaced "B by-I_)and have simplified

the first two main terms by the introduction of I'I_ and_ see

(2.4.20) and (2o4o19)] The _ bracket
indicates that the

vector operation so enclosed should be performed before any other

vector operation im the term° The symbol s [ ] _ does not

affect differentiation°

Applying the general conservation equation _see (2o5,5)]to the

second term in (4.3o13)_ we write

_=0 /_=o

+ ax7, (4° 3.14)



where the _=_*I terms in the fourth main term of (4.3.13) have been

included in the fourth main term of (4.3.14).

Nextj we define several new quantitiesj

and

¢/I_ / (/L'HI _'--"'_ / )] (4.3.18)

As in tlie definition of "_-I > (4.3.7), the above quantities are

operators_ with the /_J indicating differentiation not only

of the square bracket in the operator, but also of any function of

___ to the right of the operator. The operators, _ _ _ , and

._E_ I and _ are related_ respectively to the magnetization,__ __ _

the polarization_ P and the polarization current_ O#

Substituting the above definitions and the definitions of P and

ee (2.3.15) and (2.4.22 into (4.3.14), we write

77
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(4o3o19)

Combining (403.19) and (4°3.6) with (4.3ol)., we obtain

(4°3°20)

The bracketed quantity in the first term of this expression is

analogous to a charge distribution and that in the second term is

analogous to a current° The additions to _ in the first term

and J in the second are_ of course_ due to the internal structure

of the molecules°

The force_ _ _ may also be written in a different form° From

equations _see (2o3o17] and (2°4.24)]Maxwell's third and fourth

we write

(4.3.2].)

and
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_ _L___ _U _E
_ - _c _

(4.3.22)

It is also easily shown that

where _ indicates the transpose tensor.

(4.3.20) may be written

(4.3.23)

Using these relationsj

(4.3.24)

Now we use the second Maxwell equation, (2.2.7)_ to rewrite the

time derivatives in the above. This results in the expression,

•-- _ll" -- i- - ....

__t_
WVC

where

- _ - __ = L_c -J,

(4.3, 25)

__,_- _._ (4.3.26)
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is an operator related

Using the identity

to the displacement_ DD see (2o3o16)7

X

x ×B= _i7>,_v,_ <__.,' _,
(4° 3o 27)

i

with a similar expression for EXI_-_X_I j we obtainfrom_ _ (4.3.25)

# \

I _,_ / _ X _t_J ] (4.3.28)

where

(4.3o 29 )

_.D,=E+<,_-._,, (4° 3.30)

and

_ _- W_-_ (4.3o31)
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In the above __._!is related to _he displacement_ _D _ and _ to

the magnetic intensityj H _ so that "1- may be thought of as a

generalized Maxwell stress tensor.

Finally_ defining the quantities_

--'- _Trc • --
(4.3.32)

and

we write
(4.3.33)

Thus the long range electromagnetic force in (4. i. 14) is written as

the time derivative of an electromagnetic contribution to the

momentum density plus the divergence of an electromagnetic

contribution to the pressure tensor.

4.4 Two _orms of the Equation of Motion

For a gas in which the molecules interact according to a short

15
range potential_ the equation of motion may be written as

(4.4. i)
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where _ is an external body force and where the collisional

pressure_ _ is similar to, but not identical with the of

the present work. This point is amplified in section 4o5°

From (4o1.14) and (4o2o21) we write the equation of motion of

our system in a form similar to (4o4.1)_

(4°4.2)

where

_ _ _ (4°4°3)= # ,

The effects of the long range electromagnetic fields are contained

in _ [see (4°3.20)] in the form of a "pondermotive" force

addition to the equation of motion.

Substituting the expression for X given by (4° 3.34) into

(4.4.2)_ we arrive at an alternate form of the equation of motion_

(4.4.4)

In this form_ the long range electromagnetic effects are contained

in _N , the electromagnetic "momentum"_ and _L _ the electromagnetic

"pressure".

Both (4°4.2) and (4°4.4) should be useful in dealing with

practical problems involving the equation of motion°
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4.5 Limiting Forms of the Electromagnetic Terms

As an indication of the interpretation of the electromagnetic

terms in the equation of motion_ we consider the explicit expressions

_L _ and 7-_#retaining only terms of first orderN,for

In the limit just outlined_ we write the "pondermotive" force

[see (4.3.20)? as

(4.5. i)

where we retain only the dipole terms in the expressions for £

M _ and _p Isee (2.3.15)_ (2.4o22)_ and (2°5.7)7

=-L pxA_

and

(4.5.2)

(4.5.3)

(4.5.4)
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The final forms for the expressions for --.M and __ are a result of
F -%

introducing the stream velocity_/___see (2°4 25)f_ into the preceding

forms and ignoring the effects of the Brownian motion velocity_ /_

^[see (2°4°26)7 ° These equations give a further insight into the

origin of _ and J_ o In the limit of this section these quantities

are due to the motion of P with the molecular stream°

Returning to (4o5,,1) and summing the second_ third and fifth

terms_ we find that

- x x_.P_-T_-_.__P+ z-_--x_e

a_ a(,_p _)_r "P +1 X
(4.5°5)

In deriving the above relations_ we have used standard vector

identities and Maxwell's second equation_ (2.2°7)° Adding the

sixth term in (4.5.1) to the seventh term gives

_XM_XB_-iT__xM_jXS_-= M_X xe_

___.M- M_- E

___.M_._

(4.5.6)
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where we have used standard Vector identities and Maxwell's

equatioD, i(2.1.3).

we obtain

first

Substituting (4.5.5), and (4.5.6) into (4.5.1),

-- -- -- -- (4.5.7)

The first two terms in (4.5.7) are the usual electrostatic and

magnetostatic volume forces and are the primary terms. The third
i

and fourth terms represent forces due to the effect of the inhomogeneity

of the fields on the polarization and magnetization of the system.

The final terms represent time dependent forces.

Applying the limit discussed in this section to the second

form of the equation of motion, (4.4.4), the expression for the

electromagnetic momentum [see (4.3.32)] becomes

(4.5.8)F_.l= I-- x13

In purely macroscopic derivations of the equation of motion 3, the

term, ____, (or __.X_, if _ is assumed linearly related to ___

and ___ is assumed linearly related to _ ) arises and is identified

as the electromagnetic momentum. For a system of isolated point

charges in a vacuum, _.DX_ , of course, reduces to _;_ _ thus the

difference between our results and those derived by a purely

macroscopic treatment consists only of the manner in which the

internal structure of the particles is taken into account. We now
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examine this in more detail°

The macroscopic derivation of the equation of motion consists

of forming the divergence of the Maxwell stress tensor

(4°5°9)

This quantity is also the I of section 4o3 in the limit being

considered in this section [see (4°3°29)7 Using Maxwell's

equations_ the divergence of ]- is written as

= - wine..- 7#7(-" "j
(4.5o I0)

where

(4,5.11)

is interpreted as the total force on the particles in a small

element of volume about the point t Following this interpretation_

is written as

(4o5.12)

where _,AL is the momentum density of the material medium at _---

Assuming the validity of (4o5o11) and (4o5.12)_ (4o5.10) becomes
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l

hence _.L. {0 X_) is interpreted as the electromagnetic contribution

to the momentum density.

Our major criticism of the preceding derivation is that the

assumption, that F is the total force on the material medium at
Q

, is a point not adequately demonstrated. This assumption

seems to be made largely becuase it allows (4.5.10) to be written

in the desired form of a momentum conservation equation, (4.5.13).

It is, of course, difficult to determine the correct expression

for the force on the medium at _ This is one of the reasons

that we abandon the macroscopic approach in our development and

resort to the statistical treatment outlined in this chapter.

Equation (4.4.4)) contained in this work, is a consery_0.D_equation of

the form of (4_5.13) if the term __AMis neglected. For most

applications neglecting AM_ is valid as is indicated in the

discussion followlng (4.2.21). Regarding (4.4.4) as a conservation

equation, then, makes it rea_nable to interpret _ _see (4.5.8)_

as the electromagnetic contribution to the momentum. Since we

have more confidence in a statistical development than we do in a

macroscopic one, we feel that N is the correct momentum

expression.

Again introducing the simplifying assumptions outlined at the
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beginning of this section, we write the electromagnetic pressure

[ see (4o3'.33)_ in (4.4°4)as

(4.5.14)

where T in the limiting form given by (4.5.9) is the usual

expression for the Maxwell stress tensor in a material medium.

The collisional pres=_ure FLay be written, keeping only the

_=0) /_I=0 _ and /h=-I terms in (4.2.20), as

iIt-_--_')_ ' _.I(___,)d_'
# ]

+_ _--_-'I_-_,__--_D__:_-l"_ (___ .

As an aid to the interpretation of _ we rewrite the expressions

for N {ol(_j_ 'I _ 0 I p/ it) om we
= _ and = __j-_ o P r (4o2o12)_ have

where _(_i is the charge density at __ [see (2.3°13)_ In

writing the last term of the above equation_ we make use of the

relation_
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T,he second term in the second line of (4o5,17) is of the order of

magnitude of N, while the first term is of order _, where N

is the number of particles in the system. For a statistically

significant sample_ where N is assumed large, we neglect this

second term in comparison with the first; this leads to the third

line of the equation° Using a relation for _PI__l and _(-_') similar

to (4.5,1_)_ we further write from (4.2o12)

Making use of the expressions, (4.5.16) and (4o5.18), we may

interpret the first term in (4o5.15) as arising from ,'charge-charge"

forces and the second from "charge-dipole" forces.

obtain a clearer idea of the nature of _ _ the first termTo

in (4.5.15) is examined in more detail. First_ the molecules of the

system under consideration are divided into varions types° The non-

equilibrium radial distribution function for particles of type o_

and type _ is then defined as
I-
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where

(4° 5.19)

-'_ _ I__. (4° 5.20)

The quantity_

is the number density evaluated at point

An expression similar to (4o5_21)may be written for /_I_ _+8),
A

The symbol _ in (4o5.19) indicates that the summation over

is to be taken only over molecules of type _ ; the symbol _ has a

similar meaning° Introducing the radial distribution function int_

of particles of kind o<.

the first term of (4o5o16) and the number densities into the second

term_ makes it possible to write

(4°5°22)

Neglecting the second term of (4.5.15) and introducing (4°5.22) into

the first term allows the collisional pressure to be written as

(4° 5.23)
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In the limits of low density and high temperatures_ the radial
16

distribution function maybe written as

where

e_ep e

' ' ' 9 (4.5.24)

(4.5.25)

is the coulombic potential between a molecule of type

-_I_
of type _ a distance _ apart. The factor_ e

and one

wher e

is the Debye radius_ is included in the expression for the potential

to represent the shielding effect due to other molecules° If

(4.5.25) are substituted into (4.5°23), _# may be(4.5.24) and

written as

C_ II_4 -
(4.5.26)



92

In the last line of the above equation_ we have assumed

This is valid for small _ _ and_ for large _ _ the term_ _f_/l_

approaches zero rapidly enough to render negligible the error

introduced by assuming (4°5°27)°

In the usual treatment of gases with a short range intermolecular

potentia]_ the collisional pressure is given by (see the discussion

at the beginning of section 4°4°) 15

where the introduction of the C_ and /_ subscripts corresponds

to the grouping of molecules into various charge types° If the

unshielded coulomb potential_

(4° 5o 29)

is substituted into (4°5o28)_ becomes

Finally substituting the expression for _(_-)__Igiven by (4°5°24)

and (4°5.25) into (4°5°30) gives



93

(4,5.31)
The integral _n the second term of (4o5,31) is the sameas the

integral in the final expression_ (4°5°26) for _ o This integral

converges while the integral in the first term of (4.5o31) diverges.

Hence_ the expression developed in this work for the collisional

pressure of a coulombic system is convergent while the usual expression

is not. This convergence is due to the introduction of --I into

[ >]
the integrand of _ compare (4.5,30) with (4,5 23 as a

result of the separation of the electromagnetic term in (4.1o6)

into a long and a short range part° In essence_ the divergent

portion of has been removed and written in terms of the

macroscopic electric and magnetic fields as _I or X

4.6 Comparisons with Previous Results

In this section_ we compare our form of the equation of motion

with those obtained in earlier developments° First_ we compare our

17
results with those of Mazuro Mazur carried out a statistical

study of a system of molecules with internal structure_ neglecting

magnetic and retardation effects. He also neglected electric

multipoles of higher order than the dipole (or quadrapole when the

dipole is zero). In addition_ intramolecular effects are neglected

and Mazur restricted his study to molecules which are electrically

neutral.
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With these restrictions_ our equation (4°4°2) may be written

_, -.
(4°6° i)

The _ of (4.4°2) disappears because of the neglect of magnetic

effects and retardation° The electric force is obtained in this

limit from (4o5ol)_ as

P - (4.6.2)

where _.P is given by (4o5.2)° The charge density _e is absent

in (4°6°2) due Lo the neutrality of tbe molecules° The collisional

--_ _ in Mazur's case is obtained from (4°2°20) bypressure_

keeping only the /[=0 terms° The /h= O and i_ = I terms disappear

since the molecules are neutral° Hence only the /h=_. terms

containing _ _. _ but not those containing ___. _ are

retained, Under these conditions _ is given by

' ;I i •- _. _ ; - "___'_-_'___'It-," '
On comparing with Mazur_s expressions_ we see that the above

expression for _@ is identical to his 0-'_ _ our__ in

(4o6ol) is his _ , and our _ in (4.°6.2) is his _(_I ; hence

our (4.6oi) is identical with his (111.14).
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N_:__t we compare c,u_ :::-_ults with thc_-_e of Kaufma:[ ].... _ whose work

is also a statistical, st.:_d_,'o Kaufman also ignored magnetic effects°

In addition he restricted his study to particles without structure°

Under these restrictions_ equation (4°4.4) beee.n'_es

a. 3
(4° 6.4)

.a.pply_ng Kau.[man'_ restr_Lct:ions to (4o3_33)_ we obt.aim fo_ the

e i e c. t*_oma gne ti ,<: pre s _ur _"

= W-IT
(4o6o 5)

Again under Kaufman_s restrictiens_ the co1.!isio.oal pressure is

given by see, (4,, 9 20,

O = -& _ IY-e'l ' = -

where _ (°l is give*._by (4o2o13).. By comparing the above equations

with ][_ufman's results._ we see t.h._.t._w:_Eh the exceptioe, of one te.rm9

con_.ai.ned in his expre._sion _nd not i.n curs, our b4-_L+_is his

and our eq_Jation (4°6°4) is his (43)° The missing te_m c_n be

shown to be :celated to the '"self-field" terms we discarded in

developing (4oI._12) !tom (4oio11) and in developing (4o2o11) from

(4o2o10)o In dropping these terms_ we pointed out that for a

II
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large systemj they are negligible. In keeping these same terms,

Kaufman pointed out that they are important only for a system of

molecular size; hence there is no conflict between the two results.

4

Finally_ we compare our work to that of Chuo In contrast to

the statistical methods used by Mazurj Kaufman and in this work,

Chu uses a macroscopic_ "thermodynamic" approach. Chu obtains as

his equation of motion

+ .

where

(4.6.7)

5£
_ _ _ L___ _ ___ .E_+ _--__.__- _-f-,

[__ _ _L ______ _[ _ _--_I (4.6.8).

In the above expression e, _, and _ are, respectively, the'

dielectric constant_ the magnetic permeability , and the density of

the system° From our equation of motion_

we see that we must compare Chu's S with our

(4.4.2)
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(4.6.9)

where X has been evaluated in the limiting case discussed in

section 4.5 ee (4.5 7 . The result Chu obtains for _ agrees

with the above equation for X in the expression for the volume

force, _z__ +_X_ , but does not have the same form for the

inhomogeneous field terms [compare the third term in (4°6°8) with

the third and fourth terms in (4.6.9) 7 and does not include the

time dependent terms_

c. - -

at allo The collision terms)-- _-_ ._# _-_Ithat appear in the

expression for _ are replaced in _ by the "magnetostriction"

term,

thus the short range forces between molecules that are expressed in

this work in terms of the correlation quantities _ and _t'l are

treated in Chu's work in terms of derivatives of _ and _ If

the magnetostriction terms are neglected in (4°6.8)_ _ reduces to

the expression for _F ee (4.5 11 discussed in section 4.5 in

connection with a more common macroscopic development of an equation
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of motion° The commentsin section 4°5 regarding the desirability

of a statistical approach over a purely macroscopic development_

hence_ apply to Chu°s work alsoo

The essential point in the present derivation of the equation

of motion is the separatio, of the effect of the electromagnetic

force into long-range and short-range terms° Wewrite the coulomb

portion of the short-range term as a collisional contribution_ _

to the pressure tensor_ while the portion describing retardation

and magnetic effects is left as a force term_ _M ° The long-

range force is w_itten in two ways° Writing it as a "pondermotive"

force_ _ _ gives rise tc one _orm_ (4°4°2).9 of the equation of

motion_ and writing it as an electromagnetic contribution_ _.

to the pressure tensor plus an electromagnetic contribution_ ___

to the momentumdensity gives rise to a second form_ (4°4°4).

Heretofore_ there has bee_ someconfusion concerning the nature

of the electromagnetic pressure and momentum_and we hope that the

statistical definitions of these quantities developed in this

discussion clarify the situation. On comparing the present

work with that of other authors, we find good agreement with the

statistical derivations and significant disagreement with the

macroscopic derivations° Thisj perhaps, is to be expected°
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V. THEENERGYEQUATIONOFCHANGE

The final quantity for which we develop an equation of change

is the macroscopic energy density of the system__}.r _+_K +_c_ _.

In this expression, _ AF is the kinetic energy of the system

regarded as a continuum moving with the "stream" velocity_ AJ" , and

is the energy density of the random motion of the molecules relative

to the stream velocity. From the definition of the stream velocity_

_ and the random velocity, _ _see (2.4.25) and (2o4o26)_ ,

we write

From the above_ we see that the first two terms in the energy

expression are the ensemble average of the microscopic kinetic

energy of the particles. The final term in the expression for

the energy,

(5.o.3)

is shown later (in section 5.2) to be a correlation energy density

same sense that __ (see section 4.2) is a
in the correlation
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The introduction of _v_ into the expression for thepressure°

energy density is suggested by a similar term in the Irving Kirkwood
2

development of the eduation of change° The inclusion of this term

is further' justified by (as is shown later_ in section 5°2) the

cancellation of te_ms arising from the time derivative of _ _

•with terms arising from the time derivative of _r + _ _K • This

considerably simplifies the equation of change of the energy°

5oi The Time Derivative of the Energy Density

We develop an e xp__ession for the time derivative of the energy

density using metteals similar to those used in the preceding

chapter see (4oloi) and (4_io2 . Expanding r - .

in a Taylor series about E_ _see (4°2°9 _ we write the

correlatio[_ euerg_ density_ (5,0o3)_ in the form:

h_=O A=o ,,

In writing (5.1_i), we have ignored the term_

(5.1.2)
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because this term_ which involves a sum ever k only_ is of order

-J-- compared to the term included in (5oI. I)) whi.ch involves a
M

sum over both k and I0 Since M is the number of molecules

in the system_ M is sufficiently large that the error introduced

by ignoring (5° 1,2) is negligible,

Using the general equation of change_ (Io5oi6)_ we obtain for

the time derivative of the correlation energy density_

/.--o .k,e =' 7
• •

(5.1.3)
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The general equation of change is also used to obtain the time

derivative of the kinetic energy density

(5.1.4)

From I:!_e d_f_,t.__:i,,:,_ cf /4/'_ a_d /_ ; we _,'_i_.e the first term on

Here _<- rr'._k_: _ ::£ the delinition 0:£! _14 _ (4olo5)_ and

define

As we d_d :(_ ":_ "l 7'_ c,_,_ x^_ite the second term of (5 1.4) as the

sum oi tx_ro [(_-_,.-,_
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In the above equation __X _ appears in the terms on the right

instead of _X _ since

o. (5°1.8)

Also __-_(_-_i instead of _,I-_l appears in the first term on the

right due to the neglect of the "self" electric field [see the

discussion associated with (4oi.ii) and (4olo12)]

Finally combining (5olo3)_ (5.1.4)_ (5olo5)_ and (5oi.7)_ we

write for the time derivative of the energy density

(5.1.9)
where

(5.1ol0)

and
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(5.1.ll)

The first term in (5oi.11) 9

arises from the time derivative of the kinetic energy density

_see (5.1o4)and (5.1o7) 7 .,while the second term,
t. .J

(5o1.12)

is the time de[ivative of the correlation energy density _see (5olo3)_o

Equation (5ol,,9) has the form of a conservation equation, i.e.

the time derivative of _ scalar (the energy density) is equal to

the divergence of a vector (the energy flux) plus a scalar (the

energy source term). Hence, X and _ may be interpreted as

the rate at which the electromagnetic fields do work on a small

region of fluid about a point, [. These quantities may, thus, be

called the power density terms° Referring to the discussion in

section 4,.i_ we interpret X as the long range power density due

to the macroscopic fields. This is analogous to the interpretation

of the long range force_ X_ in (4.1.14)o Similarly, analogous

to the treatment of the short range force, /_ _ in (4o1.14),

is interpreted as the short range power density due to the effects
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of correlation,

5.2 The Short RangeTerm

Weconsider the short range power__ _ in greater detail°

In comparing the forms of the two parts of _ _ _{¢'_and _(m_

_see (5.1.12)and (5,1.!3) ] with the /_ of section 4,1 [see

(4.1.9)] j we see that the form of Z_(KI is very similar to that

of _ Therefore_ we first treat in a manner paralleling

our treatment of A in section 4_2. In the latter part of this

section_ we return to _(¢_and show that it cancels some of the

terms in the resulting expression for /_(KI'

Using the double average notation introduced in (4o2.1)_ we

separate into two terms

_I=__ ,(KI ZlIKIface M "
(5o2ol)

The first term_

I
is the coulombic interaction term analogous to

in section 4°2. The second term_

2.2)

_ ¢._see (4.2' 4)_

(5°2.3)
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where E]-(-_I__- is defined by (4o2o6)_ is the retardation correction

to the eoulombic interaction plus the short range magnetic interaction

term_ This term is analogous te _M [see(4o2o5)]_ and.b as is

pointed out in section 4o2_ is probably small°

_xpatlux.g in a Taylor series ee (4°2°9 we

write

On the light s:ide o_ (5 i_4)j we have not included the term_

(5.2.4)

-- / 3

s__nce it is negligible compared no the term we have included,

(5.2°5)

This

point is discussed further following (4o2o10).

We _ow introduce a function

oi ,_ l ,i l r (5 6)



similar to the _ (__ ee

G {_I involves the velocity as

order term of (5o2.6)_ is

(4.2_12)J of section 4o2 except

well as the position° The zeroth

that

(5.2.7)

107

This function is closely related to the difference between the pair

distribution function and the product of single particle distribution

functions. The higher order terms in the expression for -- describe

the effects of molecular structure° In the absence of pair correlation

_(_'_ vanishes_ hence _(_I

J -J

with respect to either position or velocity_

is a correlation function.

In terms of (5°2°4) may be written

-_A_:I_:°=d_(_-'-''_'"'-'"")"'_(_'-- --_)'_+'_/_a_,_,_,k,:_,.1__,_.__,_,,
(5.2°8)

- - ta=l _ .... •

The last line in (5°2°8) is obtained by interchanging variables in

a manner similar to that used in developing (4o2o16) and by using

the relation

(5.2.9)
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where _ an a_b_:rary tensc,_ of order /_ The derivation of

<5 2°9) fcl!cws lines =_.,_._r tc those u=sed in deriving the corres-

first '_d sec_,nd line_ ot (5_2.8), we write

- - _" _G (r;r'_. __
¢. _. -- -J

0

,_+,I I gr'i_r2u""

GVeE

Combinir_g the

_ see (A,2oi8)_ _. integzating

._ad 5_,::,i:Q:_.c.g o_e :,f the p[:imes c_ ->*r _ (.5_ 2o 16) becomes

(5.2,1!)

a__• _(-aT).,.i(.__,J c= ,-,-, - ta_'_=I__-.'_-

if _he at._,ve ex_fe_stcn i,of _ is added tc the expres_ion fo:

6_'/ > de.'ived ',-n _h_ pr_viot_s sectio,; _see _'5 i.I'3) and '',,io3)_

.a number of term= c_.:,cel.. To c._r_y ont this addrt:fon_ it ts

cc_ver_eet, to Intr_:,duae the correlatien fu.nc_ion _(_} into t_e

express!e:_ _ce "!_'cl We first, define a new correlation functi.on_
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which is a partial time derivative of _ taken over the intraparticle

coordinates _o The zeroth order term of __ is, of course_

p

(5o2o13)

_ , which involve time derivatives ofThe higher order terms of

_ related to the effects of motion within amagneticare

molecule°

Substituting _ _jri__j_ land _ -,-j-j- into (5.1.13) and

(5.1 3), we obtain

(5.2.14)

Adding the above equation to (5o2.17)_ and making use of (5o2.1) and

(5ololi) results in



°

ii0

By s_bstituting _ _J-j-s g4//_ into the expression for _

(4o2o20)_ and _ _ _ i'5.1o].)_ we obtain

_=0 (5.2.16)

and

_,_: _- t_'_ )_---_'13--G-(''II_ - '_-_"_-'/-_!____>

Using (5..2.,16) and (.5,2.17):, (5..2.15) is written as

A_ _ _- ,¢ .1-_ ,
(5.2.18)

where
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(5.2.19)

is that part of A which apparently cannot be _itten as a divergence.

The term _ is defined by

_._0

where

t I

/__ _ -/__ _ (5o2o21)

II I/ (5.2o 22)
=__ -_

and

,:_ (5.2.23)

;I-_,--'l:I-_,-_;::-,-_')_'' "_l
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I 11

In the above definitions_ the __ and /__ are analogous to the ___

and may be thought o£ as random velocities relative to the stream

ve!ocity/__ The :_s analogous too = _ = _ but is a correlation

f_nction cve_ the ._nd_._ velocity instead of the total velocity

From (5°2_16)_ (_o2oi7)_ a_d (5o2_20)._ we see that _#_ _ D@ ,

and _# are correlaticn quantities since they all involve some

vel-i:ion of the col'relation function° Since the first term in the

expression ior Ai _ [5 pol9b involves a version of _'_

also_ _s ;J correlation ter_._. Finally by comparing M see (5°2.3
f-

with _l_sec_ _4,._. !J)_ both are seen to have similar forms; hence

by an argume_ _._io_cu._ r.c .that dsed t.c,show that __A M is a

corre]atio_ t:er. _ [sa_: _be d:/s'_,ssion fol.lowin_ (4°2°24) 7 _ it can

be shown that is _.]so (crrel.ati.on dependent° Thus and

are cotreiation quat)tlti.eSo As was peinted out in the discussion at

the end of secticn 4_?._ _.orrelation implies a short range collisional

interaction. It i.s in this sense that we regard the term_ _ _ as a

short range te_mo

5.3 The Long Range _e_7_

We now retur_, to t_e te_m _ which represents the long range

macros,zo[.ic' effects ef the electromagnetic fields° The discussion

in this sect_on _l,_sel_ parallels the discussion of ___ in

section 4o3,.
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Expanding (5.1o10) in a Taylor series, we w_ite

Applying (4,3.5), the order of differentiation in (5.3.1) is inter =

changed to give

_---0 /a-O

L_, _t (_,-_;l_-__-_ _ = • -
_--0 /¢:0

/_'_0 /%--0

;,,._(,,-,,/ti_=_J.<,--,,/ .<,, i_u_xaj,e(__- .__

Using standard vector identitiesj the above is rewritten as



114

.... ' 7i?.<=_\e_ _"4 rl.__- xE/_=0 /1_ 0

...." <--,, l--'..-.t,,_,.4!i_.<j.,4__e r! _t)_.x .e_

:/D ' '

(5° 3.3)

Te '__Lm;i'_'.! e!e :ot:_ c,' _ _,'-< rl_: • : _ 4. f +:"<"_,<)),, three new

"7,._:J'_rit [_!_- _: e .;,t: d , ,:; _,;.,.- ' ;_ -r " ._";t it.v,

2Ntv-'-"L _....'
__ £1. /.__._.¢ (_i ,_,-ii,,/1_s_. - -L'LL

(5, g.4)

.'_ ,> Ihe secondj

'41_antlt v

Aq.-_z3-_ -"_.(-_),_..._,i!i _t,_,-4
_,_0 /_O t/nT_<'/_)'

(5° 3.5)
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is an operator in the sense of the magnetic moment operator_

Fsee (4o3o15_] _ and is_ in fact_ that part of ___ which is
k "J

dependent on _---_o The final quantity_

[[? \,_I-_ R(_I )I (5°3°6)

is related to ___----U in a manner similar to that in which '_V

a

r _

_see (2o5o9)_ _ related to P_ Tofurthersi_plify (5.3.3),
the previously defined current density_ 3 ; magnetic moment density_

M, and polarization current operator, _,,, _see (2.4o21), (2o4o22),

and (4°3o17)_ are introduced° The sixth and seventh terms of the

last form of (5° 3.3) result from the application of the conservation

equation for P, (2o5o9), to the fourth term of the initial form of

(5.3.3).

It is also possible to write X in another form° Coupling the

Maxwell equations_ (2°2°7) and (2o4o24)_ we obtain

_D .m + _ B-- _-J.E +c
_ - _t - - -

(5°3.7)

Using the definition of D _ (2.3.16), and H____ (2.4.23)_ and

rearranging terms_ we write (5.3.7) as

(5.3.8)
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_L. ([Z:_

t

F

!
C5,

)
3.9)

(5,,3olo)

=_,nd

4 ,,

_t_'i !3 (5<, 3, 11)

i

t

(5.3.12)

_e,d

\
(.50 3o I_.3)

l_!e ',_;'t 1 I C.

o' t,L e, ""
X .......

(.5.3.14)
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In (5°3.14)j then_ the long range electromagnetic contribution to the

equation of energy changehas been expressed as she sumof three terms.

The first term is the time derivative of a quantity_ _L _ which may

be interpreted as the electromagnetic contribution to the energy

density° The second ter_ is the divergence of a quantity_ _L _ which

maybe interpreted as the electromagnetic contribution to the energy

flux. The final term_ _t _ is not so easily interpreted. From
J

(5.3.11), it is clear that every term of _ contains the time

derivative of __ _ ioe_ __ _ the velocity of a particle within

a molecule with respect to tbe center of mass of the mol_culeo These

intramolecular motions give rise to the magnetic properties of the
I

individual molecules_ hence _< is related to the magnetic effects°

5°4 TwoForms of the Energy Equation of Change

For a gas in which the molecules interact according to a short
18

range potential_ the energy equation of change is

- '
(5o4oi)

where _ _ and are similar to_ but not identical with

our correlation energy density_ U_ , correlation pressure_ _

and correlation energy flux_ _ This point is amplified in

the next section°

' From (5.1o9) and (5.2o18)_ our energy equation of change may be
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written

oI_I__I/_oA__+X +_/_ (5.4.2)

where

(5.4.3)

(4.4.3)

and

(5.4.4)

In the form of the equation of change given in (5.4.2)_ the effects

of the long range electromagnetic fields are contained in the long

range electromagnetic power term_ X see (5.3.3

Substituting the expression for X given by (5.3.14) into

(5o4.2)_ we arrive at an alternate form of the equation of energy

change:

(5.4.5)
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In this form the long range electromagnetic effects are contained

in the long range electromagnetic energy density_ _g _ and the

long range electromagnetic energy flux_ _L _ plus an "extraneous"
l

power _ X

Both (5°4.2) and (5.4°5) should be useful in dealing with

practical problems involving the energy equation of change.

5.5 Limiting Forms of the Electromagnetic Terms

As an indication of the interpretation of the electromagnetic

terms in the energy equation of change_ we consider the detailed

expressions for X _ _L, _L_ _ and _ keeping only terms of

first order in _and U_.

In the limit just outlined_ we write the long range electro-

magnetic power tsee (5o3.3)_ as

+ ._3,,.E_._+ ;_ .E-"f'.E__ __ .B,_ (5.5.1)

where we retain only the dipole terms in the expressions for

__P_,_ _ and _ In other words (4.5o2)_ (4.5 3) and (4°5.4)
_ -- o

hold for _ _and__ ----___ and __ Isee (2 58)_, o o is expressed as



120

In this limit, the operator_ l_J'l _ in

as the function_

(5°3.3) is written in (5o5.1)

_--c

"-P"x/v (5.5.3)

In the last line of (5°5.3)the stream velocity_ v [see (2.4.25)_

is introduced_ neglecting the effects of the Brownian motion velocity_

/___ _see (2°4.26)_j. Comparing (5.5.3)with the limiting forms

for _ and ____ given by (5.5°2) and (4°5.3) makes it reasonable in

the limit of tbi_ section to interpret _ as a source term of the

magnetization_ _ _ in the sense that _ is interpreted as a source

term of the polarization_

Applying Maxwell_s second equation_ (2.2.7), to the second and

third terms of (5o5.1) and applying the polarization conservation

equation_ (2°5°9), to the fourth, fifth, and sixth terms_ we obtain

X:G,E+3 : -'n', (5.5.4)

The first term of (5°5,6) is the usual Joule heat term° The second

term represents the rate that work is done by the interaction of the

polarization current and the electric field_ while the third
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and fourth terms represent the rate that work is done by the interaction

of the magnetization and the magnetic field°

Considering the electromagnetic energy density next_ we see that

the simplifying assumptions introduced at the beginning of this

section produce no changes; hence

This equation differs from the us_Jal macroscopically derived

expression for the e]_atromagnetic energy densit_ 9 which is

 Tr" - - - •

Both (5o3.12) and (5°5°5) reduce to the same form for a system of

isolated point charges in a vacuum. However_ when the point charges

are grouped into molecules and the effects of multipole moments

are introduced_ a difference exists which we now examine in greater

detail°

l

The usual form_ UL , may be shown macroscopically to be equal

to the work done in assembling the true charges and currents of the

20
system_ ioe. in assembling the charges and currents that contribute

to _g and _ However_ choosing this definition is arbitrary°

It is possible_ for instance, to choose instead the work done in

assembling the total charges and currents_ ioe. those that contribute

to



122

i> ¢,ek

end

(5.5.6)

(5.5.7)

Lu f,_':: : k _'_.-,.,: !:hi_ _total work" as a basis o[ [he definition of

the e._._r_:i.,__:,_'_.::, :,:e obtain> using the macroscopic derivation cited

We: d:; not. !,'_'_:,_:-.J_!t.b_e D,__,rd_ii_Jiti"or: of the energy density o_:_

tl_e ab_:_v_ ,.b:_e.:,.!,_,.:,.. Ou_ defia:ition is _:ho_en because> when the

_e. eq_,at:_,",, et .:'1_:_.e i_ writren in the form of (5 4 5)_ with as

[nan/ te!'_, ;_ !o_stb]e wr [tte::_ as a ti_rte derivative plus a divergence_

the te_m _L. i_- _7_o,_!j6_d_,'lt:h the energy terms_ It is_ consequently_

_uite r_t_r:.] _d _uventer, t to _aall _Jk. _.n ene[gy density.

Turnr:,g now to the energy flux_ and introducing the simplifying

approximetlcue d_sc.,_ssed previoasly: we write from (5.3.1.3)

$C- -- _x_ --3 ._. c¢_ _ __j =P _ .

[_e f.i.k_bL /_:IH_ it7, tL_Ji5 equation is the usual expression for the

Poynt.ing ve_tc,.. I[,e _-eco_,d term represents the energy flow due to

twe pola[iza[ic_ C_.._f,','eh'L,

Wen_'.__o,,__1_e_the _ol_isiona_terms U,_and _._. Treating
U_l,
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_ f_rst_ we _etain only the first two terms in its series expansion

(5o2017), to write

J_U,= _. _ - ..... __.__,j3= _-J-_-j-_ - -

(5.5.9)

The last line it, the above equation is the result of carrying out the

integrations over _I _411and _ in the first lineo The explicit forms

of _°_ _'I_'_and _ are given by (4.5o16) and (4.5o18). From these forms_

as _nas pointed out in the discussion of _ in section 4o5_ we can

interpret the first term in (5:.5.9) as resulting from charge-charge

interactions and the second te_m as being due to charge-dipole

interactions.

Following the discussion of _ still further._ we
consider the

first term of (5°5°9) in greater detail° Introducing the radial

distribution function _(_-_-I _see (4o5o19)] into the first

term of (5_5,,9) and discarding the second term _ we obtain

where ___ is given by (4.5o20) and /_ by (4° 5.21). Introducing
\

the low density limiting form for _(_-j_) given by (4o5.24)_

(5° 5.10) becomes
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(5o5.il)

In the irving and Kirkwood treatment of gases with a short

_ange int=rn_o]e:-,_-lar potential, the collisional energy density in

0]
(5o4JI) is given by"

For' _ coulombiu pc.ter_. [a.i to which the short range treatment does

no U apf __y.: tL-_J :..,....:':::-÷

_ (5.5.13)

Comparing (5 5o:I) and (5.5.13) _ _ i.s seen to involve only a
l

convergent integral while f _ contains a divergent integral as

wello The convergence of _# is due to the presence of -I in the

integral in (5o5.10). the -i is present because _ contains only

the sho_t _ange ef:[ects of the intermolecular potential° The long

£

range eflects of ti:ls potential which cause _ _@ to be divergent

are incl_ided in t_.:e ]ong range power term_ X., where they are

expressed in terms o:f the macroscopic electromagnetic fields°

We now aD<,.iyze ._ in a similar fashion. Retaining only the

first two terms (s = 0, n = 0, i) in the series expansion of _# ,
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(5o2_20), we obtain

17,_ • - - - -
I_ -_'1 _

| -- -- •

U (5.5.14)

It may *De shown b? an _nalvsis similar to that used in interpreting

the le_d te,r_i..__,:_f-U_ a_d _ [see (5°5°9)and (4o5o15)_, that the

first term in (_5.14) is due to charge-current interactions and the

second term to charge-.dipole current inte_actionso

If, as a ftlrther approximation_ we assume the position of the

particles in our system are uncorrelated with the Brownian motion

velocities, it is easily shown by techniques similar to those used

in deriving (4° 20 14) that

C'( ,j '"/
_/_ - J =F J (5° 5.15)

Therefore_ eliminating the second term in (5.5o14) from further

consideration we write after a bit of manipulation involving the

/ H

dummy variables _ and /__ in the first term._
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-- _ _ _ ii,, _,11..1 ! "I'll

-- "kj__ i -_ i d -

. t

_ _ _

_ _-J-,_" __ _.

(5o5.16)

In procee_._g fro_o th_ _ t_itial to the final form of (5o5.16)_ we have

l

made use cf th_ _ -_:_,_e_._sioc_ relating the Brownian motion velocity)_ '1

_-o the total veio.::i_iy, [_'_s_ ee (5.2.21)I

A _econd di_t_ i butio_ function_ .i_ _ (_-J_-l.' is now defined as

_ (5..5o 17)

In the above equatio,n_ _(__) _ defined by

is the stream velocity of' particles of type o( Treating in

N_o)
a manner similar to the treatment of __ in (4.5.16) and making use

of the above distribution function _esults in the expression_

-_- _ - _ - (5.5 19)
o
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When (5o5o19) is substituted into (5°5.16)_ the energy flux density

may be written as

(5.5.20)

In writing the last form of (5=5.20)_ use is made of the previously

discussed approximation_

(4.5°27)

The Irving and Kirkwood expression for the collisional energy

flux of a gas composed of molecules with a short range interaction

potential becomes

(5.5.21)
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_hen the _hort range petentia! is replaced by a coulomb potential°

For large _ both _ I-_j__)----_l and _I-_j_)--->I to a first approximation°

; is a divergent integral while the $# ofHence_ in this limit_

this work is a convergent integral° As in the case of _ _ the

integral in _ _ ...........rges because it involves only the short range

effects of the intermolecular potential° The long range effects that

l

make __ divergent are included in this treatment in the long-range

power term_ X _ where they are expressed in terms of the macroscopic

electromagnetic fields.

5°6 Comparisons with Previous Results

In this sect_on_ we compare the form of the energy equation of

change derived i_ this work with those obtained in earlier develop-

mentso

7

First we compare our results with those of Kaufmano Kaufman_

as was pointed out in section 4.6_ treated statistically a system

of point particles without internal structure ignoring magnetic

effects° If we introduce these approximations into our equation

(5_4o5), we obtain
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(5°6°2)

gorotlib_r !O_ _...... _ Cto

L

D
_emair_s unchanged while the

(5o5_2)] becomes

l
r N _°)("_'t;,-:F r_-?_.____

(5°6°3)

_,. _ remsins"/_...+ unchanged

[_ee _ _,_ and (,5_2_20_

(5°6°4)

in c_.,_ ,:::)tet, lce K_z._f::_:_'_e energy equation o£ change is

0

(5°6°5)
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Comparingthis equation with (5o6.1) we see that the only difference

includes the "self field" terms _______Dandis that Kaufman

and the term,_E _-_"_')\_'/o The "self field" terms are the terms

we neglected in developing (5.1.1) and (5.2°4)° In dropping the

"self field" term_ we point out that they are neglected for a large

scale system° In keeping these same terms_ Kaufman points out that

they are important only for a small scale system° On this pointj

then_ tDere se<_ms to be no conflict. Furthermore_ it seems to us

that Kauiman was in error in including the term s/,'T_4-_,,_ _

in his eq_._ation because when we apply Kaufman's approximations to

Max_ell_s fo_a_t_ cquatio__ (2°4°24), _,_e obtain

j+$ E
= O. (5°6°6)

.o

It is_ thds_ cur conclusion that there is no basic disagreement

between our work and that of Kaufmano
i

We now compare our statistical treatment with Chu's

4
"thermodynamic" treatment° Chu's equation of ener'gy change may be

written

.....

+_ _-+ _ +-_k+ _-#EX__

(5,6.7)
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where _ , _ , and _ are, respectively, the dielectric constant,

the magnetic permeability, and the mass density of the system°

Comparing the above equation with the equation of change_ (5°4.5),

derived in this work_ we observe that the long range energy density_

U L , and energy fiux_ _L. , see (5o3o12) and (5o3o13 are

replaced in Chuis work by D.I_+I_'_ and _ EX_J , respectively°

Chu_ therefore, agrees with the usual macroscopically derived
J_

expressions for the energy density and energy flux /see (5°5°5) and

the discussion following (5o5o8)J , but he does not agree with our

results° Furthermore, in corr_paring (5.6.7) and (5=4.5), we observe

that the correlation energy density, _ _)1_ _ obtained here

___ see (5o2o16)J is replaced in Chu's treatment by

:_,DoE6_-_+__._-_,..--- - ---- . Also, Chu replaces the correlation

energy wor [see
I

(5o2o17), and (5°2020) 7 by his i{E" (_ _-i '#I

+'M t_ _- + _ This last difference results from the

difference between a statistical basis and a thermodynamic basis

for the derivation of the energy equation° The thermodynamic basis

Chu uses treats the short range forces between molecules in terms of

gradients of _ and _ , while the statistical basis used here

treats these same forces in terms of the correlation quantities_

21
The final comparison that we make is with the work of Pai.

His treatment is also based on thermodynamic arguments° In the
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,_otation used here, Pai's energy equation of change (ignoring the

.effects of radiation) is

- (5°6.8)

Comparing this equation with (5o4o5)._ we see that, as in the previous

case_ the U_ and _L of our work is replaced by _ (_°_-'_°_1

_d ._ E y" _-- in Pal's treatment. Hence Pai's long range terms

agree with th,.sc of t|:_ usual macroscopic derivations rather than

,-Jith ours ....... _,.,.- however Pai has no terms comparable with

_:_r collisionai t:e_ms t:o take into account the short range inter-

The esse_:l.i:_l point in the development of this chapter, as in

the developmerJt c,_ Chapter IV is the separation of the effect of the

electromagnetic torce into long and short range terms° The coulomb

portion of the short range term leads to the collisional contributions

_V_, _and _, to the energy density, pressure tensor, and

energy flux_ respectively° The portion describing the retardation

I

and magnetic effects is left as a power term, A The long range

term is written in two ways° Writing it as a power term, X, gives

rise _o one formi(5.4.2), of the energy equation of change. Writing

it as an electromagnetic contribution_ _ , to the energy flux

plus an electromagnetic contribution, _ _L , to the energy density,
!

plus an "extraneous" power, _ , gives rise to a second form,
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(5.4o4)_ of this equation°

The present statistical derivations of the electromagnetic

energy density and energy flux help to clarify the nature of these

quantities. As in the previous chapter_ on comparing this work with

that of other authors_ agreement is found with those using statistical

methods and disagreement with those using "thermodynamic" derivations.
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SUMMARY

In this work we have used classical, non-relativistic mechanics

to describe a system of molecules composedof nuclei and electrons

with a purely coulombpotential of interaction. The primary aim has

been to derive the equations describing the time evolution of certain

fundamental macroscopic properties of the system_ namely the electric

and magnetic field densities and the mass_momentum_and energy

densities°

In Chapter I_ the time evolution of the microscopic properties

of the system is clescribed in terms of Maxwell's and Newton's

equations [see (Ioloi) through (1.1.6)] and the Hamiltonian of
..A

the system is derived C see (1.4oi)_ The concept
of a

macroscopic property is defined in terms of a statistical ensemble

average of the corresponding microscopic property see (1°5°2 .

From this definition and the Hamiltonian_ an equation of change_

is derived for any macroscopic dynamical variable°

(1o5.16)

The operator

-I
is

analogous to the Lio_vi!le operator for the system _see (l.5.10)J

In Chapter II_ this general equation of change is used to derive

the Maxwell equations

----.g=O
(2.1.3)
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(2.2.7)

_" _ =
(2.3.17)

and

_ - c.---'X kl -_J
_ _-_ _ _

(2°4.24)

for the m_croscopic electromagnetic fields° In the above equations

E....a_,d B-- _see (2°2°4) and (2.1.1) are the macroscopic electric

and magnetic fields> the sources of which are the nuclei and electrons

[see the discussions at the ends of sections 2°3 andof the system

2o4_ The quantityL f_ is the charge density _see (2°3°13)]
I"

and J is the current density bee (2o4.21)_ The quantities

D= E +_vP (2.3.16)

and

H- g-_vM (2.4.23)

are, respectively_ the electric displacement and the magnetic

intensity_ the sources of which are the molecules of the system°
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The polarization_ P and magnetization_ M appearing in the
Q-.

above equations are further defined bee (2.3,15)and (2o4o22)J

in" terms of the molecular multipole densities_ Q(_I_ _'(_I' and i-_..ML''"

see (2o3o11)_ (2o4o19)_ and (2°4°20 which result from the

one-center multipole expansion of the intermolecular potential. The

Maxwell equations given here for a molecular system are the familiar

Maxwell equations in a material medium, The statistical derivation

of these equations is new_ however_ and the explicit expressions

obtained for the polarizat±on and magnetization clarify the physical

significance of these quantities.

In the final three chapters the hydrodyhamic equations of change

a_= derived° The equation of change for the mass density_
,J

see (3o0o4)_)which is

(3.0,5)

is the same for a coulomb gas as for a non-ionized gas°

The quantity /_ in the above equation is the stream velocity

_see (2°4.25)]

The equation of change for the momentum density is written in

two forms

(4.4.2)



137

and

--D--_-" N_" #+ _ --_M•(4.4.4)

These equations may be compared with the momentum equation of change

for a non-ionized dilute gas,

where _ is ti_e k_netic pressure tensor _see (4.1.5)] The

terms by which (4°4°2) and (4.4.4) differ from the above equation

represent the effects of the coulomb potential

These effects are of two types. The short range or "collisional"

effects discussed in detail in section 4.2 are represented by ___

_see (4o2.20)_ the "collisional" contribution to the pressure

tensor_ and __AM[see (4o2.5)_ The long range effects discussed

in section 4°3 are represented in (4.4.2) by the "pondermotive" force_

_ _see (4.3°20) 7 or in (4.4.4)by the long range
electromagnetic

contribution to the pressure tensor_l. [see (4.3.33)] , and the

electromagnetic contribution to the momentum density____ _see (4o3.32)]

The low density limit of the momentum equation is discussed in section

4.5 and compared with previous results in section 4.6.

The equation of change for the energy density is derived in

Chapter Vo Again two forms_
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.4.2)

and

(5,4.5)

,XJ

are obtained° The energy equation for a non-ionized gas is

where _ _ is the kinetic energy density [see (5o0. I)? and _

is the kinetic energy flux _see (5.1o6)_ The terms by which

(5.4°2) and (5°4.5) differ from the above equation represent the

(0.0.3)

effects of the coulomb potential° The short range effects discussed

in section 5,2 are represented by f U_ _ the collisional contribution

to the energy density _see (5o2o17)] _ by _# _ the short range

contribution to the energy flux _see (5.2o20)_ _ by _ _ and by

_1 [see (5.2o19)] The long range coulomb effects are represented
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in (5°4°2) by X _ the electromagnetic power see (5.3°3 In

(5°4..5), the long range effects are represented by _L and _& , the

electromagnetic contributions to the energy density and energy flux

)_13 and X' [see (5.3 12) and (5 3o by
o . see (5o3o11)

The low density limit of tile energy equation is discussed in

section 5°5° and;compared with previous results in section 5.6°

The results obtained in this work for the equations of change

for the momentum and energy densities agree quite well with previous

results derived_ statistically_ for various special cases° The

results_ howevez_ disagree with several earlier results obtained by

c_the_. " ' _ _.. thermoc!y":-:amlc _ 'nethods.
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